### Basic Magnetics Bootcamp Session I Basics

Stan Trout May 17, 2022



## **Basic Magnetics Bootcamp**

- Welcome
- Background
- I. Basics
- Things we already knew
  - Poles
  - Living on a magnet
  - Viewing magnetic fields
- Two simple tests
  - Does it stick to a magnet?
  - Does it remain magnetized?
- Magnetic Theory
  - Hysteresis
  - Units and Conversions

- II. Magnetism: Electro- and Ferro-
- III. Processing: Mine to Magnets
- IV. Thermal Properties of Permanent Magnets

### Background

## Background



Stops along the way (Where I learned about magnets)

- Univ. of Pennsylvania
- Recoma
- Crucible
- Hitachi
- Magnequench
- Molycorp
- Consulting

## What Spontaneous Materials Does

- Technical Training
- Material Selection
- Industry Reports
- Process Development

MAGNETIC MATERIALS

• Troubleshooting

- Magnetic Design Review
- Due Diligence
- Expert Witness
- Advice to Investors
- Market Studies



21 Years

#### Some Perspective

#### Roughly 90 % of the useful information about permanent magnets can be learned in a few hours. The remaining 10% takes a lifetime to learn. Anonymous





http://www.understandinginnovation.wordpress.com

#### Things We Already Knew

### Magnets Have Poles



- We call them North pole and South pole
- Like poles repel; opposite poles attract
- A magnet has both a North and a South pole, regardless of size! No single poles.

## The Earth is a Magnet

- Our tiny magnetic field
  - 100,000 times smaller than an MRI magnet
- Magnetic poles and geographic poles
  - Nearly the same location
  - The magnetic poles move
- A compass points North

  A North seeking pole
- Notice the polarity of the Earth!



### We Can See Magnetic Fields

• Iron powder follows the magnetic field lines



Source: Walker





Source: Colts web site

### We Can See Magnetic Fields

• Green paper



Magnet Viewer Magne-Rite, Inc.



Source: Walker

### Two Simple Tests

### The First Test

- How does a material respond to a magnetic field?
  - Magnet sticks: "magnetic"
    - Ferromagnetic
    - Ferrimagnetic
  - Magnet doesn't stick: "nonmagnetic"
    - Paramagnetic
    - Diamagnetic

## The Second Test

- What happens when the magnetic field is removed?
  - Doesn't remain magnetic
    - soft magnetic material
  - Remains magnetic
    - Easy to change, recording material
    - Difficult to change, permanent magnet

## Magnetic Theory

#### Hysteresis

• A *delayed and nonlinear* response to a stimulus



### Ocean Temperature Cape May, NJ



## Hysteresis

- A delayed response to a stimulus
- In this case, the stimulus is an applied magnetic field, and the response is the magnetization or flux density
- The *shape* of the hysteresis loop tells us what kind of material we have













# Two Types of Materials

- Soft Magnetic
- Hard Magnetic (Permanent Magnets)
- Notice
  - Height
  - –Width
  - Watch the x-axis scale!

## Soft Magnetic Materials

- Low  $H_{cJ}$
- High flux,  $M_s$ 
  - Iron
  - FeCo
- High permeability
  - Permalloy
  - Soft ferrite
- Low loss
  - Si-iron
  - Amorphous materials
  - Soft ferrites



### Permanent Magnets

- High  $H_{cJ}$
- High  $B_r$
- Squareness  $H_k$
- Applications
  - Motors, generators
  - Actuators
  - Speakers
- Materials
  - Alnico, Ferrite
  - SmCo, NdFeB



#### The Three Vectors

- *B*, Magnetic flux density or Induction.
- *H*, Magnetic field. (from current)
- *M*, Magnetization. (a material property)
- Vectors are not independent, but related.
- Induction is the combination of magnetization and magnetic field.

## Flux Density or Induction, B

- Concentration of total magnetic flux in a region
- Lines of magnetic flux passing through a given area, lines per *area*
- Units: Webers/m<sup>2</sup> or Tesla (T)

Magnetic Flux

 $\Phi = B A \cos\theta$ 



## Magnetic Field, H

- A magnetic field created by current flowing in a wire.
- Units: Ampereturn/meter (A/m), or Tesla (T) for μ<sub>0</sub>H



Source: Cullity-Graham

# Magnetization, M

- The magnetic state of a material
- The sum of all the atomic magnetic moments per unit volume
- Magnetic moments originate from unpaired electron spins, usually in the 3d or 4f electron shells
- Units: A/m for M Tesla (T) for  $J = \mu_0 M$



#### How are B, H and M related?

# Induction, B is a combination of H and M. In SI Units

 $B = \mu_0 (H + M)$ 

 $\mu_0 = 4\pi \times 10^{-7}$  Tesla-m/A, Magnetic Constant

 $\mu_0 M = J$ , Polarization

## CGS Units

- SI units: <u>m</u>eter, <u>k</u>ilogram, <u>s</u>econd
- CGS units: <u>c</u>entimeter, <u>g</u>ram, <u>s</u>econd
  - $-B=H+4\pi M$
  - *B* in Gauss
  - *H* in Oersted
  - $-4\pi M$  in Gauss
  - Older data tend to be in CGS units

#### Conversions

| Quantity                                     | Symbol              | CGS Unit                         | SI Unit                                         | Conversion                                         |
|----------------------------------------------|---------------------|----------------------------------|-------------------------------------------------|----------------------------------------------------|
| Magnetic Flux Density,<br>Magnetic Induction | В                   | gauss (G)                        | tesla (T)                                       | 1T = 10,000G                                       |
| Magnetic Field<br>Strength                   | Н                   | oersted (Oe)                     | ampere/meter<br>(A/m)                           | $10e = 79.58 \frac{A}{m}$                          |
| Magnetization                                | $4\pi M$ (CGS)      | gauss (G)                        | Not used                                        |                                                    |
|                                              | М                   | emu/cm <sup>3</sup>              | ampere/meter<br>(A/m)                           | $lemu = 1000 \frac{A}{m}$                          |
| Polarization                                 | J (SI)              | Not used                         | tesla (T)                                       |                                                    |
| Energy Product                               | (BH) <sub>max</sub> | mega-gauss-<br>oersted<br>(MGOe) | joule/meter <sup>3</sup><br>(J/m <sup>3</sup> ) | $1 \frac{J}{m^3} = 125.7 \text{G} \cdot \text{Oe}$ |

Source: IEEE Magnetics Society

## **Basic Magnetics Bootcamp**

- Welcome
- Background
- I. Basics
- Things we already knew
  - Poles
  - Living on a magnet
  - Viewing magnetic fields
- Two simple tests
  - Does it stick to a magnet?
  - Does it remain magnetized?
- Magnetic Theory
  - Hysteresis
  - Units and Conversions

- II. Magnetism: Electro- and Ferro-
- III. Processing: Mine to Magnets
- IV. Thermal Properties of Permanent Magnets